Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Food Res Int ; 178: 113938, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309866

RESUMEN

Intestinal barrier integrity is essential for normal nutrient digestion and absorption and disease resistance. This study aims to investigate how fermentation affects the ameliorative effect of bee pollen on the intestinal barrier dysfunction stimulated by interferon-γ and tumor necrosis factor (IFN-γ/TNF-α) cytokines. The results indicated that fermentation enhances the alleviating effect of bee pollen on intestinal barrier dysfunction (including elevated trans epithelial electrical resistance and decreased paracellular permeability). In addition, fermented bee pollen (FBP) significantly decreased (p < 0.05) the secretion levels of interleukin (IL)-6, IL-8, and IL-1ß and expression of cyclooxygenase (COX)-2 protein in intestinal barrier cells. Furthermore, fermentation improved the ability of bee pollen to up-regulate the expression of tight junction proteins including zonula occludens (ZO)-1, occluding, and claudin-1. Notably, FBP showed stronger ability to inhibit the expression of nuclear factor kappa-B (NF-κB) mediated myosin light chain kinase (MLCK) and myosin light chain (MLC) signaling pathway associated with phosphorylated proteins. Overall, our results indicated that fermentation enhances the protective effect of bee pollen on the intestinal barrier, and FBP has promising potential to be used as a novel functional food to protect the intestinal barrier.


Asunto(s)
Quinasa de Cadena Ligera de Miosina , FN-kappa B , Humanos , Animales , Abejas , FN-kappa B/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Células CACO-2 , Fermentación , Mucosa Intestinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , Polen
2.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260445

RESUMEN

Homeostatic modulation is pivotal in modern therapeutics. However, the discovery of bioactive materials to achieve this functionality is often random and unpredictive. Here, we enabled a systemic identification and functional classification of chemicals that elicit homeostatic modulation of signaling through Cdc42, a classical small GTPase of Ras superfamily. Rationally designed for high throughput screening, the capture of homeostatic modulators (HMs) along with molecular re-docking uncovered at least five functionally distinct classes of small molecules. This enabling led to partial agonists, hormetic agonists, bona fide activators and inhibitors, and ligand-enhanced agonists. Novel HMs exerted striking functionality in bradykinin-Cdc42 activation of actin remodelingand modified Alzheimer's disease-like behavior in mouse model. This concurrent computer-aided and experimentally empowered HM profiling highlights a model path for predicting HM landscape. One Sentence Summary: With concurrent experimental biochemical profiling and in silico computer-aided drug discovery (CADD) analysis, this study enabled a systemic identification and holistic classification of Cdc42 homeostatic modulators (HMs) and demonstrated the power of CADD to predict HM classes that can mimic the pharmacological functionality of interests. Introduction: Maintainingbody homeostasisis the ultimate keyto health. Thereare rich resources of bioactive materials for this functionality from both natural and synthetic chemical repertories including partial agonists (PAs) and various allosteric modulators. These homeostatic modulators (HMs) play a unique role in modern therapeutics for human diseases such as mental disorders and drug addiction. Buspirone, for example, acts as a PA for serotonin 5-HT 1A receptor but is an antagonist of the dopamine D 2 receptor. Such medical useto treat general anxietydisorders (GADs) has become one of the most-commonly prescribed medications. However, most HMs in current uses target membrane proteins and are often derived from random discoveries. HMs as therapeutics targeting cytoplasmic proteins are even more rare despite that they are in paramount needs (e. g. targeting Ras superfamily small GTPases). Rationale: Cdc42, a classical member of small GTPases of Ras superfamily, regulates PI3K-AKT and Raf-MEK-ERK pathways and has been implicated in various neuropsychiatric and mental disorders as well as addictive diseases and cancer. We previously reported the high-throughput in-silico screening followed by biological characterization of novel small molecule modulators (SMMs) of Cdc42-intersectin (ITSN) protein-protein interactions (PPIs). Based on a serendipitously discovered SMM ZCL278 with PA profile as a model compound, we hypothesized that there are more varieties of such HMs of Cdc42 signaling, and the model HMs can be defined by their distinct Cdc42-ITSN binding mechanisms using computer-aided drug discovery (CADD) analysis. We further reasoned that molecular modeling coupled with experimental profiling can predict HM spectrum and thus open the door for the holistic identification and classification of multifunctional cytoplasmic target-dependent HMs as therapeutics. Results: The originally discovered Cdc42 inhibitor ZCL278 displaying PA properties prompted the inquiry whether this finding represented a random encounter of PAs or whether biologically significant PAs can be widely present. The top ranked compounds were initially defined by structural fitness and binding scores to Cdc42. Because higher binding scores do not necessarily translate to higher functionality, we performed exhaustive experimentations with over 2,500 independent Cdc42-GEF (guanine nucleotide exchange factor) assays to profile the GTP loading activities on all 44 top ranked compounds derived from the SMM library. The N-MAR-GTP fluorophore-based Cdc42-GEF assay platform provided the first glimpse of the breadth of HMs. A spectrum of Cdc42 HMs was uncovered that can be categorized into five functionally distinct classes: Class I-partial competitive agonists, Class II-hormetic agonists, Class III- bona fide inhibitors (or inverse agonists), Class IV- bona fide activators or agonists, and Class V-ligand-enhanced agonists. Remarkably, model HMs such as ZCL278, ZCL279, and ZCL367 elicited striking biological functionality in bradykinin-Cdc42 activation of actin remodeling and modified Alzheimer's disease (AD)-like behavior in mouse model. Concurrently, we applied Schrödinger-enabled analyses to perform CADD predicted classification of Cdc42 HMs. We modified the classic molecular docking to instill a preferential binding pocket order (PBPO) of Cdc42-ITSN, which was based on the five binding pockets in interface of Cdc42-ITSN. We additionally applied a structure-based pharmacophore hypothesis generation for the model compounds. Then, using Schrödinger's Phase Shape, 3D ligand alignments assigned HMs to Class I, II, III, IV, and V compounds. In this HM library compounds, PBPO, matching pharmacophoric featuring, and shape alignment, all put ZCL993 in Class II compound category, which was confirmed in the Cdc42-GEF assay. Conclusion: HMs can target diseased cells or tissues while minimizing impacts on tissues that are unaffected. Using Cdc42 HM model compounds as a steppingstone, GTPase activation-based screening of SMM library uncovered five functionally distinct Cdc42 HM classes among which novel efficacies towards alleviating dysregulated AD-like features in mice were identified. Furthermore, molecular re-docking of HM model compounds led to the concept of PBPO. The CADD analysis with PBPO revealed similar profile in a color-coded spectrum to these five distinct classes of Cdc42 HMs identified by biochemical functionality-based screening. The current study enabled a systemic identification and holistic classification of Cdc42 HMs and demonstrated the power of CADD to predict an HM category that can mimic the pharmacological functionality of interests. With artificial intelligence/machine learning (AI/ML) on the horizon to mirror experimental pharmacological discovery like AlphaFold for protein structure prediction, our study highlights a model path to actively capture and profile HMs in potentially any PPI landscape. Identification and functional classification of Cdc42 homeostatic modulators HMs: Using Cdc42 HM model compounds as reference, GTPase activation-based screening of compound libraries uncovered five functionally distinct Cdc42 HM classes. HMs showed novel efficacies towards alleviating dysregulated Alzheimer's disease (AD)-like behavioral and molecular deficits. In parallel, molecular re-docking of HM model compounds established their preferential binding pocket orders (PBPO). PBPO-based profiling (Red reflects the most, whereas green reflects the least, preferable binding pocket) revealed trends of similar pattern to the five classes from the functionality-based classification.

3.
Food Funct ; 14(10): 4662-4680, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37102591

RESUMEN

Obesity is a serious health problem, and it is important to discover natural active ingredients for alleviating it. In this study, we investigated the effect of phenolamide extract (PAE) from apricot bee pollen on obese mice fed a high-fat diet (HFD). The main compounds in PAE were identified by HPLC-ESI-QTOF-MS/MS, and HFD-fed mice were treated with PAE for 12 weeks. The results demonstrated that the content of phenolamides in PAE was 87.75 ± 5.37%, with tri-p-coumaroyl spermidine as the dominant compound. PAE intervention in HFD-fed mice effectively reduced weight gain and lipid accumulation in the liver and epididymal fat, increased glucose tolerance, reduced insulin resistance and improved lipid metabolism. In terms of the gut microbiota, PAE could reverse the increase in the Firmicutes/Bacteroidetes ratio in HFD-fed mice. In addition, PAE could increase beneficial bacteria such as Muribaculaceae and Parabacteroides, and reduce harmful bacteria such as Peptostreptococcaceae and Romboutsia. Metabolomic analysis revealed that PAE could regulate the levels of metabolites, including bile acids, phosphatidyl choline (PC), lysophosphatidylcholine (lysoPC), lysophosphatidylethanolamine (lysoPE) and tyrosine. This is the first study finding that PAE can regulate glucolipid metabolism and modulate the gut microbiota and metabolites in HFD-induced obese mice, and the results indicate that PAE can be used as a functional dietary supplement to alleviate HFD-induced obesity.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Prunus armeniaca , Abejas , Animales , Ratones , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Espectrometría de Masas en Tándem , Obesidad/metabolismo , Bacteroidetes , Polen , Ratones Endogámicos C57BL
4.
Ultrason Sonochem ; 95: 106378, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965314

RESUMEN

Parboiling is gaining increasing attention as it can enhance the head rice yield (HRY) and nutritional quality of non-pigmented rice. The traditional parboiling process with high-temperature immersion requires a long immersion period and results in hard texture of cooked parboiled black rice (PBR), which may be addressed by ultrasound-assisted immersion. In this study, we evaluated the effect of power, time and temperature of ultrasonic immersion on the HRY, texture profile and nutritional quality of PBR. Proper ultrasound-assisted immersion could increase the HRY by about 20% and the GABA content by up to 133%, as well as reduce the arsenic and cadmium content by up to 61% and 79% relative to untreated black rice (UBR), respectively. Moreover, it could increase the content of essential minerals such as calcium, iron and zinc to some extent, and free and bound polyphenols, despite of a certain loss of anthocyanins. It could also improve the palatability of cooked rice. Furthermore, response surface experiments based on the Box-Behnken design were performed to obtain and validate the optimal conditions of ultrasound-assisted immersion (540 W, 45 min, 57 °C). On this basis, morphological changes might be one reason for the improved HRY, nutrition and texture of PBR compared with those of UBR, namely the disappearance of cracks near the aleurone layer and formation of new cracks in the interior of rice.


Asunto(s)
Oryza , Antocianinas , Inmersión , Ultrasonido , Culinaria/métodos
5.
Food Chem ; 409: 135342, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36586262

RESUMEN

As a common food processing technology, microbial fermentation is becoming increasingly popular to promote the bioactivity of materials. This study aims to enhance rape bee pollen bioactivity through fermentation and trace the potential components associated with its bioactivity. The antioxidant and anti-inflammatory activities of unfermented bee pollen and fermented bee pollen were evaluated, and their correlation with differential metabolites was analyzed. The results indicated that fermentation significantly (p < 0.05) improved the antioxidant (>2.3-fold) and anti-inflammatory (>1.36-fold) activities of bee pollen, and increased the contents of total phenolics and flavonoids by 1.99 and 1.53 folds. Moreover, the correlation analysis results indicated that 15 components, including three phenolamides, one flavonoid aglycone, seven fatty acids, three amino acids and one ketone compound, were positively correlated with bee pollen antioxidant and anti-inflammatory activities. These results suggest that fermentation is a promising approach to increase the bioactivity of bee pollen.


Asunto(s)
Antioxidantes , Flavonoides , Animales , Abejas , Antioxidantes/química , Fermentación , Flavonoides/análisis , Espectrometría de Masas , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Polen/química , Antiinflamatorios/análisis , Metabolómica
6.
Front Pharmacol ; 13: 1015035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188580

RESUMEN

Sinomenine is a natural compound extracted from the medicinal plant Sinomenium acutum. Its supplementation has been shown to present benefits in a variety of animal models of central nervous system (CNS) disorders, such as cerebral ischemia, intracerebral hemorrhage, traumatic brain injury (TBI), Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, depression, multiple sclerosis, morphine tolerance, and glioma. Therefore, sinomenine is now considered a potential agent for the prevention and/or treatment of CNS disorders. Mechanistic studies have shown that inhibition of oxidative stress, microglia- or astrocyte-mediated neuroinflammation, and neuronal apoptosis are common mechanisms for the neuroprotective effects of sinomenine. Other mechanisms, including activation of nuclear factor E2-related factor 2 (Nrf2), induction of autophagy in response to inhibition of protein kinase B (Akt)-mammalian target of rapamycin (mTOR), and activation of cyclic adenosine monophosphate-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), may also mediate the anti-glioma and neuroprotective effects of sinomenine. Sinomenine treatment has also been shown to enhance dopamine receptor D2 (DRD2)-mediated nuclear translocation of αB-crystallin (CRYAB) in astrocytes, thereby suppressing neuroinflammation via inhibition of Signal Transducer and Activator of Transcription 3 (STAT3). In addition, sinomenine supplementation can suppress N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ influx and induce γ-aminobutyric acid type A (GABAA) receptor-mediated Cl- influx, each of which contributes to the improvement of morphine dependence and sleep disturbance. In this review, we outline the pharmacological effects and possible mechanisms of sinomenine in CNS disorders to advance the development of sinomenine as a new drug for the treatment of CNS disorders.

7.
Food Chem ; 389: 133071, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35483300

RESUMEN

Bee pollen, which is known as a "full-nutrient food", has outstanding anti-tyrosinase activity. However, the chemical components contributing to this activity remain unknown. To comprehensively elucidate the chemical components of bee pollen inhibiting tyrosinase, we performed the anti-tyrosinase activity evaluation of bee pollen extract (BPE) of eight species, metabolomic analysis of chemical composition, multivariate statistical analysis and correlation analysis. The results revealed that the anti-tyrosinase activity of eight BPEs was significantly different (p < 0.05), with IC50 value ranging from 10.08 to 408.81 µg/mL. A total of 725 metabolites were detected from these BPEs, and 40 differential metabolites were identified, all of which were phenolamides. All these phenolamides were positively correlated with the anti-tyrosinase activity, among which 26 phenolamides (21 spermidine derivatives and five spermine derivatives) showed particularly high correlations (r > 0.7). This is the first report to reveal the main contributor to the anti-tyrosinase activity of bee pollen.


Asunto(s)
Metabolómica , Polen , Animales , Antioxidantes/química , Abejas , Monofenol Monooxigenasa/análisis , Extractos Vegetales/química , Polen/química
8.
Food Res Int ; 154: 111014, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35337573

RESUMEN

Atherosclerosis (AS) is a serious threat to the health and life of humans worldwide. The mitigating effect of polyphenol compounds from peanut skin extract (PSE) on AS has attracted great research attention. However, the mechanism underlying this mitigating effect remains poorly understood. This study aims to investigate the preventive effect of PSE on high-fat diet-induced AS in mice and explore the underlying mechanisms. PSE treatment significantly reduced atherosclerotic plaques, particularly at high doses. Dietary PSE intervention obviously alleviated the lipid metabolism disorder in ApoE-/- mice by reducing the serum TC and LDL-C contents and increasing the HDL-C content. In addition, PSE intervention significantly decreased the level of pro-inflammatory cytokines TNF-α and IL-6 and increased that of anti-inflammatory IL-10, thus exhibiting a significant anti-inflammatory effect. More interestingly, analysis of the 16S rRNA gene sequence revealed that PSE could significantly alter the community composition of the gut microbiota. Specifically, PSE enhanced the abundance of Roseburia, Rothia, Parabacteroides and Akkermansia, and reduced that of Bilophila and Alistipes. Some of these intestinal bacteria exhibited good anti-inflammatory effects, which are related to the production of short chain fatty acids. Thus, the anti-atherosclerotic effect of PSE may be partly attributed to changes in the composition and function of gut microbiota, which may be closely associated with its anti-inflammatory effect. Moreover, untargeted metabolomics analysis indicated that PSE could regulate the levels of differential metabolites in the liver, serum and fecal samples.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/farmacología , Apolipoproteínas E/uso terapéutico , Arachis , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , ARN Ribosómico 16S
9.
World J Clin Cases ; 10(3): 929-938, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35127907

RESUMEN

BACKGROUND: Depression affects more than 350 million people worldwide. In China, 4.2% (54 million people) of the total population suffers from depression. Psychotherapy has been shown to change cognition, improve personality, and enhance the ability to cope with difficulties and setbacks. While pharmacotherapy can reduce symptoms, it is also associated with adverse reactions and relapse after drug withdrawal. Therefore, there has been an increasing emphasis placed on the use of non-pharmacological therapies for depression. The hypothesis of this study was that acupuncture at ghost points combined with fluoxetine would be more effective than fluoxetine alone for the treatment of depression. AIM: To investigate the efficacy of acupuncture at ghost points combined with fluoxetine for the treatment of patients with depression. METHODS: This randomized controlled trial included patients with mild to moderate depression (n = 160). Patients received either acupuncture at ghost points combined with fluoxetine (n = 80) or fluoxetine alone (control group, n = 80). Needles were retained in place for 30 min, 5 times a week; three treatment cycles were administered. The Mann-Whitney U test was used to compare functional magnet resonance imaging parameters, Hamilton depression rating scale (HAMD) scores, and self-rating depression scale (SDS) scores between the acupuncture group and control group. RESULTS: There were no significant differences in HAMD or SDS scores between the acupuncture group and control group, before or after 4 wk of treatment. The acupuncture group exhibited significantly lower HAMD and SDS scores than the control group after 8 wk of treatment (P < 0.05). The acupuncture group had significantly lower fractional Amplitude of Low Frequency Fluctuations values for the left anterior wedge leaf, left posterior cingulate gyrus, left middle occipital gyrus, and left inferior occipital gyrus after 8 wk. The acupuncture group also had significantly higher values for the right inferior frontal gyrus, right insula, and right hippocampus (P < 0.05). After 8 wk of treatment, the effective rates of the acupuncture and control groups were 51.25% and 36.25%, respectively (P < 0.05). CONCLUSION: The study results suggest that acupuncture at ghost points combined with fluoxetine is more effective than fluoxetine alone for the treatment of patients with mild to moderate depression.

10.
Food Chem ; 375: 131908, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959145

RESUMEN

Microbial fermentation can break the bee pollen wall. However, the global profiling of bee pollen metabolites under fermentation remains unclear. This study aims to comprehensively elucidate the changes in the composition of bee pollen after microbial fermentation. Ultra-performance liquid chromatography-electron spray ionization-mass spectrometry (UPLC-ESI-MS) based on widely targeted metabolomics analysis was used to compare the chemical composition of unfermented bee pollen (UBP) and fermented bee pollen (FBP). Among the 890 metabolites detected, a total of 668 differential metabolites (classified into 17 categories) were identified between UBP and FBP. Fermentation significantly increased the contents of primary metabolites such as 74 amino acids and derivatives, 42 polyunsaturated fatty acids and 66 organic acids, as well as some secondary metabolites such as 38 phenolic acids, 80 flavone aglycones and 22 phenolamides. The results indicate that fermentation is a promising strategy to improve the nutritional value of bee pollen.


Asunto(s)
Metabolómica , Polen , Animales , Abejas , Cromatografía Liquida , Fermentación , Espectrometría de Masas
11.
Fitoterapia ; 154: 104923, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33984437

RESUMEN

Acmoxanthones A-E (1-5), five new lavandulylated xanthones, were isolated from the aerial parts of Hypericum acmosepalum, together with four known xanthones. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR and chiroptical properties. A bioassay against high glucose-induced damage on human umbilical vein endothelial cells (HUVECs) showed ananixanthone (6) and osajaxanthone (7) had potential antioxidative damage activity with EC50 values of 10.5 µg/mL and 7.6 µg/mL, respectively, while 3-hydroxy-2,4-dimethoxyxanthone (8) exhibited cytotoxic effect on the damaged cells with IC50 values of 7.1 µg/mL.


Asunto(s)
Hypericum/química , Xantonas/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Isoflavonas , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química , Xantonas/aislamiento & purificación
12.
Phytochemistry ; 187: 112771, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33882428

RESUMEN

Uralins A - D, four undescribed polycyclic polyprenylated acylphloroglucinols (PPAPs) featuring an unprecedented fused hexacyclic architecture, a unique monocyclic tetra-seco-tetranor-b-PPAP, an oxidative b-PPAP and a rare norspiroindane-type m-PPAP, respectively, were isolated from the aerial parts of Hypericum uralum, along with ten known PPAPs. Their structures and absolute configurations were elucidated by extensive spectroscopic techniques (MS, NMR, [α]D, CD), conceivable biogenetic pathways and time-dependent density functional theory-based electronic circular dichroism (TDDFT-ECD) calculations. Biological assays showed three b-PPAPs had moderate antioxidative damage activities, while spiroindanes exhibited moderate cytotoxic effects.


Asunto(s)
Hypericum , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Estructura Molecular , Floroglucinol/farmacología
13.
Nat Prod Res ; 35(2): 195-202, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31148477

RESUMEN

Twenty-one polycyclic polyprenylated acylphloroglucinols, including three new compounds named as hyperichoisins A (3), B (14) and C (21), were isolated from the aerial parts of Hypericum choisianum. The structures of those new compounds were elucidated by analysis of mass, NMR data, and chiroptical properties. A bioassay showed that otogirinin B had significant inhibitory effect on cell proliferation of A549.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Hypericum/química , Células A549 , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Floroglucinol/química
14.
Molecules ; 25(6)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168811

RESUMEN

Phenolamines and flavonoids are two important components in bee pollen. There are many reports on the bioactivity of flavonoids in bee pollen, but few on phenolamines. This study aims to separate and characterize the flavonoids and phenolamines from rape bee pollen, and compare their antioxidant activities and protective effects against oxidative stress. The rape bee pollen was separated to obtain 35% and 50% fractions, which were characterized by HPLC-ESI-QTOF-MS/MS. The results showed that the compounds in 35% fraction were quercetin and kaempferol glycosides, while the compounds in 50% fraction were phenolamines, including di-p-coumaroyl spermidine, p-coumaroyl caffeoyl hydroxyferuloyl spermine, di-p-coumaroyl hydroxyferuloyl spermine, and tri-p-coumaroyl spermidine. The antioxidant activities of phenolamines and flavonoids were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. It was found that the antioxidant activity of phenolamines was significantly higher than that of flavonoids. Moreover, phenolamines showed better protective effects than flavonoids on HepG2 cells injured by AAPH. Furthermore, phenolamines could significantly reduce the reactive oxygen species (ROS), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and increase the superoxide dismutase (SOD) and glutathione (GSH) levels. This study lays a foundation for the further understanding of phenolamines in rape bee pollen.


Asunto(s)
Antioxidantes/química , Glicósidos/química , Quempferoles/química , Polen/química , Quercetina/química , Espermidina/química , Espermina/química , Alanina Transaminasa/genética , Alanina Transaminasa/metabolismo , Amidinas/antagonistas & inhibidores , Amidinas/farmacología , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Abejas , Benzotiazoles/antagonistas & inhibidores , Benzotiazoles/química , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Expresión Génica/efectos de los fármacos , Glutatión/genética , Glutatión/metabolismo , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Células Hep G2 , Humanos , Quempferoles/aislamiento & purificación , Quempferoles/farmacología , Oxidantes/antagonistas & inhibidores , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Picratos/antagonistas & inhibidores , Picratos/química , Extractos Vegetales/química , Quercetina/aislamiento & purificación , Quercetina/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/química , Espermidina/análogos & derivados , Espermidina/aislamiento & purificación , Espermidina/farmacología , Espermina/análogos & derivados , Espermina/aislamiento & purificación , Espermina/farmacología , Ácidos Sulfónicos/antagonistas & inhibidores , Ácidos Sulfónicos/química , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
15.
Food Funct ; 10(11): 7576-7587, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31687710

RESUMEN

Honey is a natural sweetener that contains a large amount of monosaccharides such as glucose and fructose, as well as small amounts of disaccharides and trisaccharides such as sucrose and pine trisaccharides. In addition to carbohydrates, honey also contains vitamins, minerals, enzymes, amino acids, and polyphenols including phenolic acids and flavonoids. The polyphenols in honey have been proved to have great antioxidant activity, besides inhibiting α-glycosidase activity and improving blood-lipid metabolism. However, whether it is safe for diabetic patients to consume honey remains controversial. This study investigated the effects of honey, metformin and their combination on the characteristic pathological changes and glucose metabolism in STZ-induced diabetic mice over five weeks. Our results showed that honey and its combination with metformin could prevent hyperglycemia, stimulate insulin secretion, reduce liver fat accumulation, attenuate liver injury and kidney damage in STZ-induced diabetic mice. Moreover, treatment with honey or combination of honey and metformin significantly enhanced glucokinase (GK) activity (p < 0.05), and meanwhile suppressed the activities of glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase (PC) and pyruvate dehydrogenase kinases (PDK) (p < 0.05) in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa/metabolismo , Miel , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Metformina/uso terapéutico , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Miel/análisis , Masculino , Metformina/administración & dosificación , Ratones , Fenoles/química , Distribución Aleatoria , Organismos Libres de Patógenos Específicos , Aumento de Peso/efectos de los fármacos
16.
Food Chem ; 286: 608-615, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30827653

RESUMEN

The effects of honeys from different floral origins on alcohol metabolism were compared, and the correlation between their chemical compositions and antialcholic effects was analyzed. The results demonstrated that the five types of investigated honeys from different floral origins had different effects on alcohol metabolism, and the blood alcohol removal rate by these honeys ranged from 18.01% to 49.17%. Ziziphus jujuba honey exhibited the best blood alcohol removal effect, and meanwhile significantly enhanced the activity of alcohol-metabolizing enzymes including alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Chemical composition analysis also showed that honeys from different floral origins were considerably different in the contents of sugars, minerals, ascorbic acid and phenolics. Ziziphus jujuba honey had the highest fructose/glucose ratio, ascorbic acid and phenolics contents, and higher contents of minerals, especially K, Ca, Mg, Fe, Cu, Zn and Mn. This chemical composition might contribute to its better anti-alcoholic effect.


Asunto(s)
Etanol/farmacocinética , Flores , Miel/análisis , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , Animales , Ácido Ascórbico/análisis , Etanol/sangre , Etanol/metabolismo , Fructosa/análisis , Masculino , Ratones , Minerales/análisis , Fenoles/análisis , Robinia , Vicia , Ziziphus
17.
J Immunol Res ; 2018: 7245956, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320140

RESUMEN

The effects of propolis on blood glucose regulation and the alleviation of various complications caused by diabetes have been widely studied. The main source of propolis in the northern temperate zone is poplar buds. However, there is limited research on the antidiabetic activity of poplar buds. In order to evaluate the effect of poplar buds on type-2 diabetes, crude extract and 50% fraction of poplar buds were used to feed streptozotocin-induced type-2 diabetic mice. The results showed that 50% fraction could increase insulin sensitivity and reduce insulin resistance, as well as decrease the levels of fasting blood glucose, glycated hemoglobin, and glycosylated serum proteins in diabetic mice. Compared with the model control group, the 50% fraction-treated group showed significant decreases of malondialdehyde (MDA) and increases of superoxide dismutase (SOD) in serum and liver homogenate. Moreover, 50% fraction could significantly decrease total cholesterol (TC), alleviate abnormal lipid metabolism, and enhance antioxidant capacity in the serum. For inflammatory factors, feeding of 50% fraction could also reduce the levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), and cyclooxygenase-2 (COX-2) in liver homogenate. Taken together, our results suggest that crude extract and 50% fraction of poplar buds, particularly the latter, can decrease blood glucose levels and insulin resistance, and 50% fraction can significantly relieve dyslipidemia, oxidative stress, and inflammation caused by type-2 diabetes.


Asunto(s)
Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dislipidemias/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Hígado/metabolismo , Extractos Vegetales/uso terapéutico , Animales , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Humanos , Resistencia a la Insulina , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Estrés Oxidativo/efectos de los fármacos , Populus/inmunología , Própolis/inmunología
18.
Food Chem ; 252: 243-249, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29478537

RESUMEN

The biochemical properties of buckwheat honey, including contents of sugars, proteins, total phenols, methylglyoxal (MGO), minerals and phenolic compounds, were determined in comparison with those of manuka honey. Buckwheat honey has higher contents of sugars, proteins and total phenols but a lower content of MGO than manuka honey. Buckwheat honey contains abundant minerals involved in a number of vital functions of the human body as does manuka honey, and has even higher contents of Fe, Mn and Zn. In buckwheat honey, p-hydroxybenzoic acid, chlorogenic acid and p-coumaric acid are the dominant phenolic compounds. Moreover, the antibacterial and cellular antioxidant activities of buckwheat honey were compared with those of manuka honey. Buckwheat honey exhibits antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, comparable with manuka honey, and the cellular antioxidant activity of buckwheat honey is higher than that of manuka honey. Our results suggest that buckwheat honey has great nutritional and commercial potentials.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Fagopyrum , Miel/análisis , Leptospermum , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
19.
PLoS One ; 13(1): e0190205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293568

RESUMEN

Alzheimer's disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabolic abnormalities occurred at early onset in the 3xtg-AD model compared with their counterparts. Analysis of gene expression in the hypothalamus indicated increased mRNA expression of inflammation- and apoptosis-related genes, as well as decreased gene expression of Agouti-related protein (AgRP) and Melanocortin 4 receptor (MC4R) at 12 weeks of age. Immunofluorescence analysis revealed that pro-opiomelanocortin (POMC) and NPY-expressing neurons decreased at 24 weeks in the 3xtg-AD model. Four weeks of voluntary exercise were sufficient to reverse the gene expression of inflammation and apoptotic markers in the hypothalamus, six weeks of exercise improved glucose metabolism, moreover, 8 weeks of voluntary exercise training attenuated apoptosis and augmented POMC and NPY-expressing neuronal populations in the hypothalamus compared to the control group. Our results indicated that early onset of metabolic abnormalities may contribute to the pathology of AD, which is associated with increased inflammation as well as decreased neuronal population and key neuropeptides in the hypothalamus. Furthermore, early intervention by voluntary exercise normalized hypothalamic inflammation and neurodegeneration as well as glucose metabolism in the 3xtg-AD model. The data, taken as a whole, suggests a hypothalamic-mediated mechanism where exercise prevents the progression of dementia and of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Hipotálamo/patología , Condicionamiento Físico Animal , Animales , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Hipotálamo/metabolismo , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Proopiomelanocortina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
J Dairy Sci ; 99(3): 1780-1790, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26774724

RESUMEN

Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems.


Asunto(s)
Curcumina/administración & dosificación , Lecitinas/química , Fosfolípidos/química , Curcumina/química , Curcumina/efectos de la radiación , Estabilidad de Medicamentos , Tecnología de Alimentos , Glucolípidos/química , Glicoproteínas/química , Concentración de Iones de Hidrógeno , Luz , Gotas Lipídicas , Liposomas , Tamaño de la Partícula , Glycine max/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA